On Jensen’s inequality, Hölder’s inequality, and Minkowski’s inequality for dynamically consistent nonlinear evaluations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extension of Chebyshevs Inequality and Its Connection with Jensens Inequality

The aim of this paper is to show that Jensen’s Inequality and an extension of Chebyshev’s Inequality complement one another, so that they both can be formulated in a pairing form, including a second inequality, that provides an estimate for the classical one. 1. Introduction The well known fact that the derivative and the integral are inverse each other has a lot of interesting consequences, on...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A nonlinear inequality

A quadratic inequality is formulated in the paper. An estimate of the rate of decay of solutions to this inequality is obtained. This inequality is of interest in a study of dynamical systems and nonlinear evolution equations. It can be applied to the study of global existence of solutions to nonlinear PDE.

متن کامل

Nonlinear differential inequality

A nonlinear differential inequality is formulated in the paper. An estimate of the rate of growth/decay of solutions to this inequality is obtained. This inequality is of interest in a study of dynamical systems and nonlinear evolution equations in Banach spaces. It is applied to a study of global existence of solutions to nonlinear partial differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2015

ISSN: 1029-242X

DOI: 10.1186/s13660-015-0677-5